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The fluid dynamic phenomena following the impulsive start of a NACA 0015 airfoil were studied by using a time
accurate solution of the incompressible, laminar Navier-Stokes equations. Angle of attack was set at 10 deg to
simulate steady-state poststall conditions at a Reynolds number of 1.2 x 104. The calculation revealed that large
initial lift values can be obtained, immediately following the impulsive start, when a trapped vortex develops above
the airfoil Before the buildup of this trapped vortex and immediately after the airfoil was set into motion, the fluid
is attached to the alrfoH's surface and flows around the trailing edge, demonstrating the delay in the buildup of the
classical Kutta condition. The transient of this e_fect is quite short and is followed by an attached flow event that
leads to the trapped vortex that has a longer duration. The just described initial phenomenon eventually transits
into a fully developed separated flow pattern identifiable by an alternating, periodic vortex shedding.

Introduction

HE impulsive start of an airfoil at an angle of attack, conceptu-
ally, is one of the simplest examples of unsteady aerodynamics.

This assumption is based on the logic that a step function results
in the simplest and most basic time-dependent response for a given
system. However, the impulsive start of an airfoil is far from being
one of the simplest unsteady fluid dynamic examples. For instance,
the experimental evaluation of the fluid dynamic quantities must
properly separate the fluid dynamic loads from the inertia of the

support system, which is probably the reason why there are very
little data published on this problem. One of the earliest and most

basic analytical studies about a step change in the forward velocity

of an airfoil was published by Wagner _ in 1925. This first attempt
was based on a thin-wing, potential-flow model and was able to

demonstrate the delay in the buildup of lift, due to the downwash
of the starting vortex. This model of Ref. 1 was gradually improved

to include effects of thickness and of flexibility. 2-5 Similar ideal

flow models for the higher angles of attack range followed, and
Ref. 6 presents an example for such a model, whereas Refs. 7 and
8 demonstrate the extension of this model into three dimensions.

Experimental results (e.g., Refs. 9-12) on this basic problem are
quite scarce, as mentioned earlier, primarily because of the technical

difficulties involved in this seemingly simple experiment. Part of
the problem lies in the inertial effects of both airfoil model and

surrounding fluid during the initial acceleration that cause various

time delays in the measured data. Therefore, a logical and cost-
effective approach to study this very basic example of unsteady
fluid dynamics is by solving the viscous-flow equations in a time
accurate manner.

Method of Solution

The computer code, INS2D, Iz-15 was used to solve the two-
dimensional incompressible Navier-Stokes equations for the flow
over the airfoil. This code was developed to solve both steady-state
and time-dependent problems. The INS2D code has been validated
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and used extensively to simulate steady-state high Reynolds num-
ber flow over airfoils, 16.17 as well unsteady flows with airfoils. Is

The code uses the method of artificial compressibility; for time-
dependent solutions this requires the use of subiterations at each

physical time step to solve for a (nearly) divergence-free velocity

field. In the code, the convective terms are differenced using a third-
order accurate upwind-biased flux-difference splitting method, the

viscous terms are differenced using a second-order central difference
method, and the equations are integrated in time using a second-
order scheme. The implicit solution uses an iterative, generalized-
minimum-residual matrix solver resulting in fast convergence for
steady-state problems and the ability to use large time steps for
time-dependent simulations.

The present study focuses on the impulsive start of the airfoil

within the laminar flow range only. The Reynolds number based
on the airfoil chord c and the freestream velocity U_ was set at
1.2 × 104; this value matches the conditions of a water-tunnel vali-

dation experiment planned for the future. At this low Reynolds

number, unknowns associated with the modeling of turbulence are

avoided, leaving only the effects relevant to the impulsive start.

However, features such as the vortex wake roll-up can be related
to flows with higher Reynolds number. Based on this hypothesis,

therefore, the dominant flow features following the airfoil's impul-
sive start will remain in the higher Reynolds number flow case, but

the airfoil's stall will be delayed to higher angles of attack.
A C-grid of dimensions 401 x 121 was used in this study, and

Fig. I depicts the grid in the vicinity of the NACA 0015 airfoil.
The higher density cells near the airfoil surface were obtained by

using a single-block hyperbolic grid generator. A grid resolution

study using grid densities of 401 x 121,201 x 61, and 101 x 31

Fig. 1 Finite difference grid (401 x 121) around a NACA 0015 airfoil.
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Fig. 2 Lift and drag coefficients vs time for the NACA 0015 airfoil at
an angle of attack of 10 deg and time step of At = Uoot/c = 0.025.

showed that the two finest grids produced nearly the same results,
but that it was necessary to use the 401 x 121 grld to resolve the
vortex features found in this flowfield. Numerical tests of the effect

of the nondimensional time step U_At/c used in the code were

done using values of 0.0125, 0.025, and 0.05. Ifwas found that the
solutions for values of 0.0125 and 0.025 were identical, and thus the

latter value was used for all computations except during the initial

startup period. During the initial startup of this impulsive motion

(0.0 < Uoot/c < 0.02), a much smaller time step was necessary.
Numerical tests showed that a nondimensional time step of 0.0005

was adequate for this time interval. Also, on the airfoil surface the

no-slip boundary condition and on the far-field boundaries a uniform
freestrcam condition were imposed (except at the outflow boundary

where an updating scheme was used).
The airfoil section angle of attack was set at 10 deg, a condition

that is slightly above stall for this particular Reynolds number. This
borderline condition allowed the investigation of the possibility to

increase an airfoil's lift on the verge of flow separation. Also, this

condition can provide information about the time delay between

the momentary attached flowfleld and the otherwise (steady-state)
stalled condition.

Fluid Dynamics of an Airfoil's Impulsive Start

Results for the lift and drag history of the airfoil, immediately

following the impulsive start, are presented in Fig. 2. From the fluid

dynamic point of view four different flow regions can be identified.
These regions follow sequentially and their approximate duration

can be identified by the following time intervals (so overlapping or

transition between two intervals is possible):
Interval h 0.0 < U_t/c < 0.02 where the flow is attached but

the streamlines are not yet parallel to the trailing edge.
Interval2:0.02 < U_t/c < 2.0 where the flow is attached and lift

and streamline shapes follow the trends of ideal-flow calculations.
Interval 3:2.0 < Uod/c < 5.4 where a trapped vortex develops

above the airfoil, resulting in increased lift.
Interval 4:5.4 < Uoj/c < oo where the flow is separated and

accompanied by a periodic vortex shedding.
The computation of this flowfield provides a large body of infor-

mation at each discrete time step, consisting of the velocity com-

ponents and the pressure at each grid point. For the sake of brevity,

only a representative set of information is presented on each in-
terval. Thus, the discussion that follows focuses on the prominent

changes inthe airfoil's aerodynamics within each interval, with most

explanations supported by numerical flow visualizations.

Discussion of Flow Interval 1

In terms of the airfoil's motion, the first flow interval can be

further divided into two subintervals. The first one includes the initial

impulse, whereas the second subinterval includes the time frame
from the moment that the airfoil has reached its terminal speed

and onward. With ideal fluid motion in mind, if the duration of

the initial impulse was zero, then the acceleration was infinite, and
the lift is also infinite (the sharply shooting upward lift curve in
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Fig. 3 Pressure coefficient along the airfoil's upper and lower surfaces
(upper and lower curves, respectively) at the end of the initial accelera-
tion.

Fig. 2 is hidden behind the ordinate). However, in this numerical
computation the airfoil was assumed to be stationary at UoJ/c = 0

and moving forward at speed of Uoo after the first time step. Thus,
the forward acceleration was finite, and the loads on the airfoil

during this initial acceleration resemble an elliptic loading. This is

verified by the chordwise pressure distribution, depicted in Fig. 3,
representing the condition at the end of the first time step. The large

values of the pressure coefficient are a result of the small time step

(rapid acceleration), but they are close to the values predicted by

simple added-mass models (such as Eq. 13.40 from Ref. 8, yielding

a midchord pressure difference of AC v _ 700 for this case).
The rest of the first flow interval (excluding the initial accelera-

tion) relates to the condition where the airfoil has reached its terminal

speed and the flow is adjusting to this new condition. Because of
the relatively short duration of the first interval, compared with the

other three, the computations were rerun with a finer time step of
UooAt/c = 0.0005. Details of this calculation are shown by the

instantaneous particle traces plotted in Fig. 4. The most interesting

fluid dynamic aspect here is the flow around the trailing edge and the
fact that the flow is attached along the rest of the airfoil's surface.

Potential flow models, widely used for both steady and unsteady

airfoil theory (Refs. 1-3), apply the so called Kutta condition. This

condition, in general, requires that the flow leaves parallel to the
airfoil's trailing edge (not as shown in the first frames of Fig. 4).

Early flow visualizations (Ref. 19, pp. 394-397), however, demon-
strated that initially a condition similar to the one shown in the first

frame of Fig. 3, exists where there is flow around the trailing edge

and a rear stagnation point exists on the upper surface of the airfoil.

Therefore, the first question that comes to mind relates to the length
of this initial condition. Based on the_sequence presented in Fig. 4,

initial signs showing the termination of this flow around the trailing

edge are present as early as U_t/c = 0.005. At this point the start-

ing vortex, with counterclockwise circulation, is clearly visible and
it lifts off within the time frame Uoot/c = 0.01-0.02. Throughout

this initial process the flow on the airfoil is attached, but because
of the flow around the trailing edge a suction peak develops there.

Figure 5 shows the pressure distribution at Uo_t/c = 0.005 on the
airfoil and the large suction peak at the trailing edge due to the flow

around the trailing edge. Beyond UoJ/c = 0.02 the flow leaves

parallel to the trailing edge and the Kutta condition is satisfied.
Another important issue, relevant to the periodic unsteady (and

attached) flow over airfoils, is the range of reduced frequencies,

tr = toc/2Uoo, for which the validity of the Kutta condition can
be assumed. Studies (aimed at higher Reynolds numbers) such as

Refs. 20 and 21, place the limit on the maximum frequency near
tr = 2, above which the Kutta condition cannot be applied. The

present calculation can also contribute to the interpretation of this
limit by identifying the time delay associated with the flow near the

trailing edge. The numerical (attached) flow visualization within

interval I, presented in Fig. 4, implies that the trailing-edge flow

adjusts to the form assumed by the Kutta condition within approx-
imately UoJ/c = 0.02. (Based on this number one can speculate
that if a sinusoidal motion is replaced by, say, 100 impulsive motions

per cycle, then the resulting reduced frequency is ty = rr/2, which
is close to the experimental observation in Ref. 21.)
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Fig. 5 Pressure coefficient distribution along the airfoil's upper and

lower surfaces at Uoot/C = 0.005 Cmterval 1).

Discussion of Flow Interval 2

Within this interval (0.02 < UootT-c< 2.0) the flow is attached,
and both the streamline sliapes and-the pressure field follow closely
the results of potential flow theory (e_g.,_qef..g, Chapter 13). This
can be demonstrated by replotting the initial portion of Fig. 2 and
by comparing the airfoil lift with potential flow results, as depicted
in Fig. 6. The classical potential-flow values for the lift in Fig. 6
(Ref. 1) are very close to the present viscous calculations up to

U_t/c _ 2. Here the variation of the lift coefficient is controlled by
the starting vortex that appeared at the end of the first interval. The
downwash induced by this vortex is reducing the airfoil's lift (from
the thin-airfoil theory, steady-state value of Ct = 2zt ct = 1.097").As
the airfoil moves forward, leaving the strong starting vortex behind,
the lift increases gradually. This sequence continues until the end of
interval 2, at about U_t/c = 2, where a small trailing-edge separa-
tion begins to develop. The effect of the starting vortex is to increase
the component of the pressure drag (resulting from the integration of
the pressure distribution, see Ref. 3), immediately following the im-
pulsive start. This effect, which gradually diminishes, is also seen in
the viscous calculations within the time interval 0 < Uoj/c < 0.5•
However, the contribution of the viscous drag is much larger and
the effect is seen only as a small drag increase at the beginning of
the motion. The airfoil drag during the rest of this interval can be
attributed to the viscous boundary layer (since the steady-state ideal
pressure integral over the airfoil yields zero drag).

A typical vortieity plot for the flow over the airfoil in the middle
of interval 2 (at U_t/c = 1.0) is presented in Fig. 7. This figure
shows the attached flow condition and that vorticity is generated in
the boundary layer near the airfoil's surface only. Vorticity is be-
ing shed into the wake and fragments of the strong starting vortex
are still visible at the right-side end of the computational domain.
The pressure distribution over the airfoil, at the same moment, is
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Fig. 6 Initial lift and drag coefficient transients after the impulsive
forward motion of the NACA 0015 airfoil (sofid line = Navier-Stokes
computation and broken line = potential-flow model).
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Fig. 7 Vorticlty contour plot for the flow near the airfoil at Uoot/c =
1.0. Note the residues of the starting vortex at the right-hand side of the
computational domain.
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Fig. 8 Comparison between the viscous and potential flow calculations
for the pressure distribution over the alrfeil at Uoot/c = 1.0. The po-
tential calculation is based on the panel method described in ReL 8,
pp. 598-600.

presented in Fig. 8. Here comparison is made with a potential flow
calculation and results of both methods seem to be very close. The

viscous calculations, however, show a slighdy lower lift generation

towards the trailing edge, which is a result of the thickening bound-
ary layer on the upper surface. This close agreement between the two

methods and the flowfield description in Fig. 7 clearly indicate the

attached flow condition prevailing in interval 2. This also indicates
that the delay in the flow separation is on the order of U=At = 2

chord lengths, and the flow in the vicinity of the trailing edge, within
interval 2, is in accord with the Kutta condition.

Discussion of Flow Interval 3

Within this third interval a transition occurs between the attached

and the separated flow conditions. However, this interval differs

from the time-dependent separated flow in interval 4, primarily be-

cause of a large trapped vortex that considerably increases the lift of
the airfoil. The large overshoot in the lift is clearly visible in Fig. 6

with a peak lift coefficient of approximately 1.6, which is much

larger than the potential-theory value of CL = 1.097, calculated for

the steady--state case. This interval also demonstrates two important
features, namely, the delay in the airfoil's (lift) stall and the poten-

tial io generate higher lift coefficients in unsteady flows. This can

probably help to explain the large lift coefficients seen during dy-

namic heaving and flapping motions of wings (e.g., Refs. 22 and

23). A similar increase in the lift coefficient was observed during

many of the early u and more recent zs._s dynamic stall experiments

(even though these were higher Reynolds number experiments).
The transition from the attached flowfield into the one with the

trapped vortex is visualized by the sequence of vorticity plots in
Fig. 9 (only the most significant frames are presented). As early as

U_t/c = 2.0, the boundary layer thickens on the airfoil's upper

surface and a small separation bubble emerges that becomes quite

noticeable at Uoot/c = 3.0 (Fig. 9, first frame). The shear laye r
originating close to the leading edge feeds this vortex, which grad-

ually grows and moves backward (Fig. 9, Uoot/c = 4.0). At about

Uoot/c = 5.0, an instability in the feeding shear layer develops,
beginning the creation of a second such vortex. This second vortex

becomes visible toward the end of this interval, at Uoot/c = 5.4.

During this time frame, a secondary vortex develops under the large

vortex with opposite vorticity. The accumulation of these vortices

eventually leads to the liftoff of the rear vortex and to the develop-

ment of the periodic vortex shedding in interval 4. At the beginning
of this interval the lower surface flow near the trailing edge seems

to leave parallel to the surface. However, towards the end of this

sequence, at U=t/c = 5.6, the flow moves around the trailing edge,
creating a small and opposite vortex.

The large effect of the aforementioned trapped vortex on the air-

foil's pressure distribution is shown in Fig. I0. Here two frames

seem to be sufficient to visualize the process causing the increased
lift. The first frame in Fig. 10 shows the pressures at Uoot/c ----4,

at a moment when the trapped vortex becomes clearly visible. The
suction induced by this vortex on the upper surface seems to be the

cause for the rise in the lift (and drag in Fig. 6). The second frame

shows the pressure distribution when the secondary vortex signature

Fig.9 Sequence of vorticity contour plots showing the development of
the trapped vortex above the impulsively started airfoil.
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Fig. 10 Effect of the trapped vortex on the pressure distribution over
the airfoil within flow interval 3.

becomes quite large, resulting in the highest lift coefficient in Fig. 6.
In the time that follows within interval 3, these vortices move away

from the airfoil, and the suction peaks and resulting lift is reduced.

Finally, as shown by Fig. 9, at U_ t/c = 5.6, the leading-edge shear

layer develops a wavy instability that leads to the periodic vortex

shedding in interval 4.

Discussion of Flow Interval 4

In this interval the transient effect of the impulsive start has di-
minished and the well-known periodic vortex shedding prevails (see

Fig. 2). The large-scale events during a vortex shedding cycle can
be visualized by a sequence of vorticity plots, as shown in Fig. 1 I.

Locations of the large vortex structures are quite close to those ob-

served during water-tunnel flow visualizations, at the same Reynolds
number as the computations. This is seen in the photograph in

Fig. 12, which compares well with the frame at U_t/c = 25.5,

in Fig. 11. The streak lines in the photograph were visualized by

injecting colored dye at the surface of the airfoil. To complement
the discussion on the periodic vortex shedding process, the lift and

drag coefficients were replotted in Fig. 13, for the corresponding
time interval: 23.5 < U_t/c < 26.5. The shape of the lift and drag

curves are quite similar, but a small delay between the two lines is

visible• The delay may be caused by the reversed flow on the up-
per surface (during the low-drag moment, Uoot/c = 26.5) that is
reducing the skin-friction drag.

The vortex shedding sequencein Fig. 11 begins with the formation
of the counter-rotating vortex at the trailing edge (U_ot/c = 25.1).

The shear layer originating at the front begins to roll up as well.

These two counter-rotating vortices induce downwash between
them, causing a dip in the pressure distribution at the suction side of

the airfoiI (big. I4a). This cond_6on makes up the low lift part of the

cycle, as shown in Fig. 13. As the trailing-edge vortex size increases,
it lifts offat U_t/c = 25.5, and the leading-edge vortex grows, in-

creasing the airfoil's lift. At U_t/c = 25.7 the leading-edge vortex

is the largest, whereas the trailing-edge vortex has already merged

into the flow behind the airfoil. This is the highest lift condition,
which continues until Uod/c _. 26.1, when the clockwise rotating

vortex lifts off. The corresponding pressure distribution is given in

Fig. 14b, where the suction peak due to this vortex is clearly visible.
As this vortex drifts with the flow, the trailing-edge vortex formation

begins and the whole cycle is repeated. The calculated frequency

of the periodic vortex shedding yields a Strouhal number of about

St = fd/U_ = 0.15 where d is the airfoil's frontal height. This

is quite close to the expected frequency at this condition and to the
results of the flow visualizations.

°'

U.t =25.5
c _¢__

C

C

a= 10 °

Fig. 11 Sequence of vorticity contour plots showing the periodic wake
shedding process.

Fig. 12 Visualization of the flow over the NACA 0015 airfoil by colored
dye in a water-tunnel experiment at a Reynold number of 1.2 × 104.
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Fig. 13 Calculated lift and drag coefficient variation during the peri-
odic wake shedding cycle.
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lower surfaces, for the low and high lift conditions, during the wake
shedding cycle.

Concluding Remarks

The fluid dynamic phenomena following the impulsive start of

an airfoil include several sequential intervals, revealing numerous

important features relevant to other unsteady flows. For example,

the delay in the buildup of the trailing-edge flow (the Kutta con-

dition) following the initial impulse lasts about U=At/c = 0.02.

This information is important for understanding the frequency lim-

its in certain periodic flows and in their mathematical models. Also,

the computations demonstrate that there is a large delay, close to

U_At/c = 5, in the buildup of the periodic, unsteady separated

flow over a nonpitching airfoil. Furthermore, within this delayed

period the airfoi]'s lift considerably outgrows its steady-state time-

averaged value, which fact may explain the large lift coefficients

observed during flapping flight. This is caused by the large, initially

trapped vortex, which is clearly identified by the numerical flow

visualizations. At the end of this transient condition the trapped vor-

tex leaves the airfoil and the welI-known periodic vortex shedding

pattern prevails. The preceding fluid dynamics sequence resembles

somewhat the flow features observed during dynamic stall studies

on oscillating airfoils (e.g., Ref. 24). However, to the best knowl-

edge of the authors, this is the first detailed examination of the stall

sequence during an impulsive start.
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